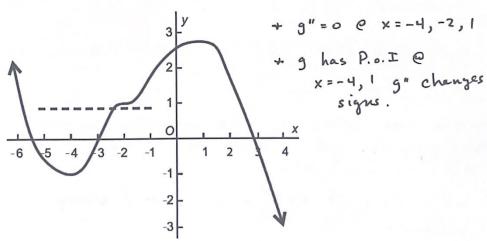

AP Calculus BC

Example 1

To the right is a graph of the function y = g'(x), the <u>derivative</u> of the function g(x). The domain of this derivative is the interval [A,H].


a. State the intervals in which the function g(x) would be <u>increasing</u>. Give reasoning supporting each of your answers.

- A graph of the function y = g'(x)
- **b.** State the intervals in which the function g(x) would be <u>decreasing</u>. Give reasoning supporting each of your answers.

Example 2

Suppose that g is differentiable. A graph of the *derivative* of g, that is, y = g'(x), is displayed below. Use that graph to answer these questions: which x-values have g''(x) = 0, and what are the first coordinates of any inflection points of g(x)?

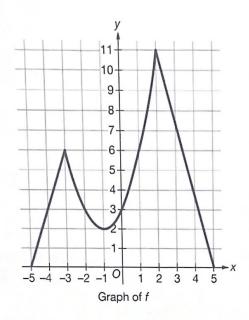
Graph of y = g'(x), the derivative of g(x)) (This graph has a horizontal tangent at x = -2.)

Example 3 (No Calculator)

Let f be the function defined by $f(x) = \frac{1}{3}x^3 - 4x^2 - 9x + 5$. On which of the following intervals is the graph of f both decreasing and concave down?

Example 4 (Calculator)

The first derivative of the function h is given by $h'(x) = 3\ln(2 + \cos(2x)) - x$, and the second derivative of h is given by $h''(x) = \frac{-6\sin(2x)}{2 + 2\cos(2x)} - 1$. On what open intervals contained in -2 < x < 2 is the graph of h both increasing and concave down?


Luc: (-2, 1.985)C. Down: (-2, -1.485)(-0.250, 1.655)

Example 5

х	0 <x<5< th=""><th>x = 5</th><th>5<x<8< th=""><th>x = 8</th><th>8<<i>x</i><12</th><th>x = 12</th><th>12 < x < 16</th></x<8<></th></x<5<>	x = 5	5 <x<8< th=""><th>x = 8</th><th>8<<i>x</i><12</th><th>x = 12</th><th>12 < x < 16</th></x<8<>	x = 8	8< <i>x</i> <12	x = 12	12 < x < 16
f'(x)	Positive	Undefined	Negative	-2	Negative	0	Positive
f''(x)	Positive	Undefined	Negative	0	Positive	0	Positive

The function f is continuous on the interval (0,16), and twice differentiable except at x=5 where the derivative is undefined. Information about the first and second derivatives of f for values of x in the interval (0,16) is given in the table above. At what values of x in the interval (0,16) does the graph of f have a point of inflection?

Example 6

The continuous function f is defined on the closed interval [-5,5]. The graph of f consists of a parabola and two line segments, as shown in the figure above. Let g be a function such that g'(x) = f(x).

(a) Fill in the missing entries in the table below to describe the behavior of f'(x) and f''(x). Indicate "Positive", "Negative", or 0.

	f''(x)	0	Positive	Positive	Zero
9"(x)->	f'(x)	Positive	Negative	Positive	Negative
9'(x)->	f(x)	Positive	Positive	Positive	Positive
	x	-5 < x < -3	-3 < x < -1	-1 < x < 2	2< <i>x</i> <5

(b) There is no value of x in the open interval (-1,5) at which $f'(x) = \frac{f(5) - f(-1)}{5 - (-1)}$. Explain why this does not violate the Mean Value Theorem.

Since f(x) is not differentiable on (-1,5), MUT does not apply

(c) Find all values of x in the open interval (-5,5) at which the graph of g has a point of inflection. Explain your reasoning.

g has a p.o. Inflection at x=-3, x=-1, x=2 b/c g'(x)

g has a p.o. Inflection at x=-3, x=-1, x=2 b/c g''(x)

g has a p.o. Inflection at x=-3, x=-1, x=2 b/c g"(x) changes signs.

(d) At what value of x does g attain its absolute maximum on the closed interval [-5,5]? Give a reason for your answer.

Since g'(x) is always positive -> g is always increasing.

: glx) attains its absolute max @ x=5